Yu Gao, Yang P. Liu, Richard Peng, Faster Divergence Maximization for Faster Maximum Flow, FOCS 2020 Slides from my talk at ITCS. With Jakub Pachocki, Liam Roditty, Roei Tov, and Virginia Vassilevska Williams. A nearly matching upper and lower bound for constant error here!
Annie Marsden, Vatsal Sharan, Aaron Sidford, Gregory Valiant, Efficient Convex Optimization Requires Superlinear Memory. With Bill Fefferman, Soumik Ghosh, Umesh Vazirani, and Zixin Zhou (2022). Google Scholar; Probability on trees and . Aaron Sidford, Introduction to Optimization Theory; Lap Chi Lau, Convexity and Optimization; Nisheeth Vishnoi, Algorithms for . CoRR abs/2101.05719 ( 2021 ) I am currently a third-year graduate student in EECS at MIT working under the wonderful supervision of Ankur Moitra. [5] Yair Carmon, Arun Jambulapati, Yujia Jin, Yin Tat Lee, Daogao Liu, Aaron Sidford, Kevin Tian. Our method improves upon the convergence rate of previous state-of-the-art linear programming .
Given an independence oracle, we provide an exact O (nr log rT-ind) time algorithm. Unlike previous ADFOCS, this year the event will take place over the span of three weeks. The Complexity of Infinite-Horizon General-Sum Stochastic Games, With Yujia Jin, Vidya Muthukumar, Aaron Sidford, To appear in Innovations in Theoretical Computer Science (ITCS 2023) (arXiv), Optimal and Adaptive Monteiro-Svaiter Acceleration, With Yair Carmon, Danielle Hausler, Arun Jambulapati, and Yujia Jin, To appear in Advances in Neural Information Processing Systems (NeurIPS 2022) (arXiv), On the Efficient Implementation of High Accuracy Optimality of Profile Maximum Likelihood, With Moses Charikar, Zhihao Jiang, and Kirankumar Shiragur, Improved Lower Bounds for Submodular Function Minimization, With Deeparnab Chakrabarty, Andrei Graur, and Haotian Jiang, In Symposium on Foundations of Computer Science (FOCS 2022) (arXiv), RECAPP: Crafting a More Efficient Catalyst for Convex Optimization, With Yair Carmon, Arun Jambulapati, and Yujia Jin, International Conference on Machine Learning (ICML 2022) (arXiv), Efficient Convex Optimization Requires Superlinear Memory, With Annie Marsden, Vatsal Sharan, and Gregory Valiant, Conference on Learning Theory (COLT 2022), Sharper Rates for Separable Minimax and Finite Sum Optimization via Primal-Dual Extragradient Method, Conference on Learning Theory (COLT 2022) (arXiv), Big-Step-Little-Step: Efficient Gradient Methods for Objectives with Multiple Scales, With Jonathan A. Kelner, Annie Marsden, Vatsal Sharan, Gregory Valiant, and Honglin Yuan, Regularized Box-Simplex Games and Dynamic Decremental Bipartite Matching, With Arun Jambulapati, Yujia Jin, and Kevin Tian, International Colloquium on Automata, Languages and Programming (ICALP 2022) (arXiv), Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary, With Aaron Bernstein, Jan van den Brand, Maximilian Probst, Danupon Nanongkai, Thatchaphol Saranurak, and He Sun, Faster Maxflow via Improved Dynamic Spectral Vertex Sparsifiers, With Jan van den Brand, Yu Gao, Arun Jambulapati, Yin Tat Lee, Yang P. Liu, and Richard Peng, In Symposium on Theory of Computing (STOC 2022) (arXiv), Semi-Streaming Bipartite Matching in Fewer Passes and Optimal Space, With Sepehr Assadi, Arun Jambulapati, Yujia Jin, and Kevin Tian, In Symposium on Discrete Algorithms (SODA 2022) (arXiv), Algorithmic trade-offs for girth approximation in undirected graphs, With Avi Kadria, Liam Roditty, Virginia Vassilevska Williams, and Uri Zwick, In Symposium on Discrete Algorithms (SODA 2022), Computing Lewis Weights to High Precision, With Maryam Fazel, Yin Tat Lee, and Swati Padmanabhan, With Hilal Asi, Yair Carmon, Arun Jambulapati, and Yujia Jin, In Advances in Neural Information Processing Systems (NeurIPS 2021) (arXiv), Thinking Inside the Ball: Near-Optimal Minimization of the Maximal Loss, In Conference on Learning Theory (COLT 2021) (arXiv), The Bethe and Sinkhorn Permanents of Low Rank Matrices and Implications for Profile Maximum Likelihood, With Nima Anari, Moses Charikar, and Kirankumar Shiragur, Towards Tight Bounds on the Sample Complexity of Average-reward MDPs, In International Conference on Machine Learning (ICML 2021) (arXiv), Minimum cost flows, MDPs, and 1-regression in nearly linear time for dense instances, With Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, and Zhao Song, Di Wang, In Symposium on Theory of Computing (STOC 2021) (arXiv), Ultrasparse Ultrasparsifiers and Faster Laplacian System Solvers, In Symposium on Discrete Algorithms (SODA 2021) (arXiv), Relative Lipschitzness in Extragradient Methods and a Direct Recipe for Acceleration, In Innovations in Theoretical Computer Science (ITCS 2021) (arXiv), Acceleration with a Ball Optimization Oracle, With Yair Carmon, Arun Jambulapati, Qijia Jiang, Yujia Jin, Yin Tat Lee, and Kevin Tian, In Conference on Neural Information Processing Systems (NeurIPS 2020), Instance Based Approximations to Profile Maximum Likelihood, In Conference on Neural Information Processing Systems (NeurIPS 2020) (arXiv), Large-Scale Methods for Distributionally Robust Optimization, With Daniel Levy*, Yair Carmon*, and John C. Duch (* denotes equal contribution), High-precision Estimation of Random Walks in Small Space, With AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh, John Peebles, and Salil P. Vadhan, In Symposium on Foundations of Computer Science (FOCS 2020) (arXiv), Bipartite Matching in Nearly-linear Time on Moderately Dense Graphs, With Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak, Zhao Song, and Di Wang, In Symposium on Foundations of Computer Science (FOCS 2020), With Yair Carmon, Yujia Jin, and Kevin Tian, Unit Capacity Maxflow in Almost $O(m^{4/3})$ Time, Invited to the special issue (arXiv before merge)), Solving Discounted Stochastic Two-Player Games with Near-Optimal Time and Sample Complexity, In International Conference on Artificial Intelligence and Statistics (AISTATS 2020) (arXiv), Efficiently Solving MDPs with Stochastic Mirror Descent, In International Conference on Machine Learning (ICML 2020) (arXiv), Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond, With Oliver Hinder and Nimit Sharad Sohoni, In Conference on Learning Theory (COLT 2020) (arXiv), Solving Tall Dense Linear Programs in Nearly Linear Time, With Jan van den Brand, Yin Tat Lee, and Zhao Song, In Symposium on Theory of Computing (STOC 2020). Computer Science. Nima Anari, Yang P. Liu, Thuy-Duong Vuong, Maximum Flow and Minimum-Cost Flow in Almost Linear Time, FOCS 2022, Best Paper
/Producer (Apache FOP Version 1.0)
[pdf] [talk] [poster]
Honorable Mention for the 2015 ACM Doctoral Dissertation Award went to Aaron Sidford of the Massachusetts Institute of Technology, and Siavash Mirarab of the University of Texas at Austin. Prior to coming to Stanford, in 2018 I received my Bachelor's degree in Applied Math at Fudan
[pdf] [talk] [poster]
My CV. International Conference on Machine Learning (ICML), 2021, Acceleration with a Ball Optimization Oracle
Faster energy maximization for faster maximum flow. Call (225) 687-7590 or park nicollet dermatology wayzata today! Congratulations to Prof. Aaron Sidford for receiving the Best Paper Award at the 2022 Conference on Learning Theory ( COLT 2022 )! Janardhan Kulkarni, Yang P. Liu, Ashwin Sah, Mehtaab Sawhney, Jakub Tarnawski, Fully Dynamic Electrical Flows: Sparse Maxflow Faster Than Goldberg-Rao, FOCS 2021 113 * 2016: The system can't perform the operation now.
[pdf] [poster]
Cameron Musco, Praneeth Netrapalli, Aaron Sidford, Shashanka Ubaru, David P. Woodruff Innovations in Theoretical Computer Science (ITCS) 2018.
Outdated CV [as of Dec'19] Students I am very lucky to advise the following Ph.D. students: Siddartha Devic (co-advised with Aleksandra Korolova . My research interests lie broadly in optimization, the theory of computation, and the design and analysis of algorithms. Contact. In particular, this work presents a sharp analysis of: (1) mini-batching, a method of averaging many . [i14] Yair Carmon, Arun Jambulapati, Yujia Jin, Yin Tat Lee, Daogao Liu, Aaron Sidford, Kevin Tian: ReSQueing Parallel and Private Stochastic Convex Optimization. [pdf] [poster]
July 8, 2022. The following articles are merged in Scholar. Page 1 of 5 Aaron Sidford Assistant Professor of Management Science and Engineering and of Computer Science CONTACT INFORMATION Administrative Contact Jackie Nguyen - Administrative Associate
arXiv preprint arXiv:2301.00457, 2023 arXiv. The ones marked, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, 424-433, SIAM Journal on Optimization 28 (2), 1751-1772, Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, 1049-1065, 2013 ieee 54th annual symposium on foundations of computer science, 147-156, Proceedings of the forty-fifth annual ACM symposium on Theory of computing, MB Cohen, YT Lee, C Musco, C Musco, R Peng, A Sidford, Proceedings of the 2015 Conference on Innovations in Theoretical Computer, Advances in Neural Information Processing Systems 31, M Kapralov, YT Lee, CN Musco, CP Musco, A Sidford, SIAM Journal on Computing 46 (1), 456-477, P Jain, S Kakade, R Kidambi, P Netrapalli, A Sidford, MB Cohen, YT Lee, G Miller, J Pachocki, A Sidford, Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, International Conference on Machine Learning, 2540-2548, P Jain, SM Kakade, R Kidambi, P Netrapalli, A Sidford, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, 230-249, Mathematical Programming 184 (1-2), 71-120, P Jain, C Jin, SM Kakade, P Netrapalli, A Sidford, International conference on machine learning, 654-663, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete, D Garber, E Hazan, C Jin, SM Kakade, C Musco, P Netrapalli, A Sidford, New articles related to this author's research, Path finding methods for linear programming: Solving linear programs in o (vrank) iterations and faster algorithms for maximum flow, Accelerated methods for nonconvex optimization, An almost-linear-time algorithm for approximate max flow in undirected graphs, and its multicommodity generalizations, A faster cutting plane method and its implications for combinatorial and convex optimization, Efficient accelerated coordinate descent methods and faster algorithms for solving linear systems, A simple, combinatorial algorithm for solving SDD systems in nearly-linear time, Uniform sampling for matrix approximation, Near-optimal time and sample complexities for solving Markov decision processes with a generative model, Single pass spectral sparsification in dynamic streams, Parallelizing stochastic gradient descent for least squares regression: mini-batching, averaging, and model misspecification, Un-regularizing: approximate proximal point and faster stochastic algorithms for empirical risk minimization, Accelerating stochastic gradient descent for least squares regression, Efficient inverse maintenance and faster algorithms for linear programming, Lower bounds for finding stationary points I, Streaming pca: Matching matrix bernstein and near-optimal finite sample guarantees for ojas algorithm, Convex Until Proven Guilty: Dimension-Free Acceleration of Gradient Descent on Non-Convex Functions, Competing with the empirical risk minimizer in a single pass, Variance reduced value iteration and faster algorithms for solving Markov decision processes, Robust shift-and-invert preconditioning: Faster and more sample efficient algorithms for eigenvector computation.